Local Area Networks: Ethernet
Dots, Toomas Tommingas
Chair of Real-Time Systems (RAS)

PART A: The CSMA/CD Access Method

PART B: Network Aspects

Motivation for LANs
- goal: connect computers in same site (building, small campus)
- experience from host centric networks: bursty traffic
- basic idea: share a cable, no complex software in end system

Access Method
- multiaccess communication = share a communication medium
 - radio channel, cellular networks, satellite links
 - machine bus
 - local area cable
- shared medium requires an Access Method
 - deterministic:
 - Time Division Multiple Access (TDMA)
 - Token Passing (Token Ring, Token Bus, FDDI)
 - non-deterministic
 - Aloha
 - CSMA/CD

Access Method Topology
- Two topologies are used
 - bus:
 - all bits sent by one station are propagated to all stations
 - data die at end of bus
 - all stations see all frames
 - used by Ethernet, Token Bus
 - ring:
 - all bits are passed from one station to next station, then to next’s neighbour, etc
 - bits eventually return to originating station which has to remove them
 - all stations see all frames
 - used by Token Ring and FDDI
Access Method Topology (cont.)

- **Access Method topology** = physical topology = topology used by bits
- **Logical topology** = topology used by the token in case of Token Bus (logical ring over a physical bus)
- **Cabling topology** = layout of cables = star in most cases (see later)

ALOHA

```
while (i <= maxAttempts) do
  sent = false
  RTD = true
  if ack received then leave
  else:
    increment i
    and do
```

CSMA

- **Improvement 1**: Listen before you talk: “Carrier Sense Multiple Access”

- **Improvement 2**: Wait random time before retransmission

CSMA/CD Time Diagram 1

- A senses idle channel, starts transmitting
- Shortly before T, B senses idle channel, starts transmitting

CSMA/CD Time Diagram 2

- A senses collision, continues to transmit 32 bits (‘jam’)
- B senses collision, continues to transmit 32 bits (‘jam’)

CSMA

- **Improvement 3**: detect collisions as soon as they occur : “Carrier Sense Multiple Access / Collision Detection”

- **Improvement 4**: acknowledgments replaced by CD
- This is Ethernet (= 802.3, the standard conformant version of Ethernet)
Exponential Backoff

- Random time before re-transmission is given by:

\[k = \min(10, \text{AttemptNb}) \]

\[t = \text{random}(0, 2^k - 1) \times \text{slotTime} \]

- Examples:
 - First retransmission attempt:
 \(k = 1, t = 0 \) or \(t = \text{slotTime} \)
 - Second retransmission attempt (if preceding one failed):
 \(k = 2, t = 0, 1, 2 \) or \(3 \times \text{slotTime} \)

SlotTime and Minimum Frame Size

- A minimum frame size equal to number of bits transmitted during one round trip is required to detect all collisions

- \(\text{slotTime} = \text{number of bits transmitted by a source during the maximum round trip time for any Ethernet network} \)
 - Includes propagation time in squares + margins
 - 4 terminals + 3 segments + 2 stations + 2.2/21.2 µs = 27 µs ≤ 48.4 µs

- A rule: In Ethernet, all frames must be as large as \(\text{slotTime} \)

- Properties:
 - P1: All collisions are detected by sources
 - P2: Collided frames are shorter than \(\text{slotTime} \)
 - P3: All previous idle
 - P4: Because collided frames are aborted by source at latest after \(\text{slotTime} \), including jam bits

Minimum Frame Size

- \(t = 0: \) A begins transmission

- \(t = 1: \) B begins transmission

- \(t = 1: \) B detects collision, stops transmitting

- \(t = 2: \) A detects collision

CSMA/CD Performance

- Bound on throughput:

\[\theta \geq \frac{1}{(1 + 3.1 \alpha)} \]

where \(\alpha = \frac{\beta}{L} = 2.5 \times \text{propagation delay / transmission time} \) with \(L \) = frame size, \(\beta \) = bandwidth-delay product

- Approximation:

\[\theta \approx \frac{1}{(1 + 2.5 \alpha)} \]

- Key for high utilization is: bandwidth delay product \(<< \) frame size
Bandwidth Delay Product

- Interpretation of bandwidth-delay product

\[\text{last bit sent by A arrives} \]

\[\beta = 2 \text{DR} \]

- large \(\beta \) means: delayed feedback

CSMA/CD Performance

- We have:
 \[\alpha = \frac{x}{R} \]
 \[\beta = \frac{1}{x} \text{ in average} \]
 \[E(x) = \text{collision occurred} = 1 - \text{exp}(-R/x) \]
 \[P_{\text{success}} = \text{transmission} = 1 \]
 \[P_{\text{collision}} = \text{transmission} = \text{exp}(-R/x) \]

The last formula is because collisions can occur only if an arrival occurs during the propagation time \(R \), because of collision avoidance. The average cycle time is thus, for this worst case scenario:

\[\tau = \left(\frac{1}{x} + \left(2R \cdot \text{exp}(-R/x) + T \text{exp}(-R/x) \right) \right) \]

computing the maximum of \(\tau \) with respect to \(x = R/\mu \) gives the formula (maximum obtained for \(x = 0.40 \)). Note that \(\mu = 2R/\tau \).

- the approximation shown is based on simulations
 - for a large network, \(\beta \) is close to 60 Bytes; for traffic with small frames \(\beta \approx 64 \) bytes, the utilization is less than 30%. For large frames (1500 Bytes), it is around 30%.

IEEE Architecture Model

MAC Service

- data packet = MAC service data unit (SDU)
- MAC frame = MAC protocol data unit (PDU)

Repeaters

- Extend network beyond cable length limit
- Function of a simple (2 port-) repeater:
 - repeat bits received on one port to other port
 - if collision sensed on one port, repeat random bits on other port
- One repeated network = one collision domain
- Even with repeaters, network is limited:
 - propagation time
 - IEEE 802 slotTime includes repeater
 - at most 4 repeaters in one path
 - Repeaters perform physical layer functions only (bit repeaters)
From Repeaters to Hubs

- **Multiport repeater:**
 - \((n\) ports) logically equivalent to \(n\) simple repeaters connected to one internal Ethernet segment
 - Multiport repeaters are possible to use point-to-point segments (Ethernet in the box)
 - Value of point to point cabling?
 - ease of management
 - fault isolation

- **Multiport Repeater** [Diagram]
- **Ethernet Hub**
- **S1**
- **S2**
- **S3**
- **UTP segment**

From Bus to Star and Tree

- Ethernet today = active concentrators allow star wiring
- UTP on point-to-point configurations only
- remote network management
- How many frames can be transmitted in parallel in this network?

Switched Ethernet

- Switched Ethernet = Bridge in the Box
- Total Bandwidth is not shared: parallel frame transmission
- An Ethernet Switch is a connectionless data switch
- Ethernet used as a point-to-point mechanism!

Repeater and Bridges in OSI

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 LLC
- 1 MAC
- 1 Physical
- Repeater
- Bridge
- End system

Today's Concentrators

- Concentrators (thehub) combine bridging (frame switching) and port switching (assign repeater ports to the same collision domain)
- NB! Broadcast!

MAC Frame Format

- MAC Frame
- PDU
- LLC Address Fields
- 1 LSA
- 2 SNAP value
- Information
LLC - LSAP

LSAP - LLC Access point, SAP Source and Destination

<table>
<thead>
<tr>
<th>VALUE</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>TCP/IP (DoD)</td>
</tr>
<tr>
<td>10</td>
<td>NetWare</td>
</tr>
<tr>
<td>AA</td>
<td>SNAP (Subnetwork Access Protocol)</td>
</tr>
<tr>
<td>F0</td>
<td>NetBIOS</td>
</tr>
<tr>
<td>F5</td>
<td>LAN Network Manager Group</td>
</tr>
</tbody>
</table>

MAC Addresses

<table>
<thead>
<tr>
<th>MAC Frame</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T + 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IG = 0</td>
<td>Individual address</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IG = 1</td>
<td>Group address</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U/L = 0</td>
<td>Globally administered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U/L = 1</td>
<td>Locally administered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAC Addresses

<table>
<thead>
<tr>
<th>MAC Frame</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IG = 1</td>
<td>Address in 15 bits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IG = 0</td>
<td>Address in 5 bits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Token Ring (IEEE 802.5)

<table>
<thead>
<tr>
<th>Frame</th>
<th>PS</th>
<th>SD</th>
<th>AC</th>
<th>VC</th>
<th>DA</th>
<th>SA</th>
<th>Data</th>
<th>FCS</th>
<th>ED</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token</td>
<td>PS</td>
<td>SD</td>
<td>AC</td>
<td>ED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>PPP Priority bits, T-Token bit, M-monitor bit, RRR Reservation bits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED</td>
<td>J.K non-data (CPF/SK), I-intermediate frame, E-error bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS</td>
<td>A address recognition bit, C-Copy bit, r-reversed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FDDI MAC protocol

- Key differences compared to 802.5:
 - seize token by aborting the token transmission instead of flipping the T-bit;
 - early token release (already in 16 Mbps version)
- Frame Status (FS) field
 - each station checks any passing frames and sets E-bit accordingly
 - MAC protocol does not attempt to retransmit the frame with E-bit set. It is the responsibility of LLC or some higher-layer protocol.

FDDI Capacity Allocation

- The priority scheme of 802.5 not applicable due to “early token release”
- FDDI capacity-allocation scheme seeks to accommodate a mixture of stream and bursty traffic
- use of synchronous and asynchronous frames
FDDI Capacity Allocation

\[\text{TTRT} - \text{Target Token Rotation Time:} \]

\[D_{\text{Max}} + F_{\text{Max}} + \text{TokenTime} + \sum S_a \leq \text{TTRT} \]

\(S_a \) = synchronous allocation for station

\(D_{\text{Max}} \) = propagation delay for one complete circuit of the ring

\(F_{\text{Max}} \) = time required to transmit a max length frame (4500 b)

\(\text{TokenTime} \) = time required to transmit a token

IEEE 802.3 Physical Layer

<table>
<thead>
<tr>
<th>100 BASE-TX</th>
<th>100 BASE-FX</th>
<th>100 BASE-T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission medium</td>
<td>2 pair, STP</td>
<td>2 pair, Cat 5 UTP</td>
</tr>
<tr>
<td>Signalling technique</td>
<td>4B5B, MLT-3</td>
<td>4B5B, MLT-3</td>
</tr>
<tr>
<td>Data rate</td>
<td>100 Mbps</td>
<td>100 Mbps</td>
</tr>
<tr>
<td>Maximum segment length</td>
<td>100 m</td>
<td>100 m</td>
</tr>
<tr>
<td>Network span</td>
<td>200 m</td>
<td>200 m</td>
</tr>
</tbody>
</table>

DQDB - Distributed Queue Dual Bus

<table>
<thead>
<tr>
<th>Node 0 (Head (A))</th>
<th>Node 1</th>
<th>Node 2</th>
<th>Node (N-1) (Head (B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DQDB (IEEE 802.6)

<table>
<thead>
<tr>
<th>Frame, 125μs</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Slot, 53 Byte</th>
</tr>
</thead>
</table>